Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.512
1.
Int J Mol Sci ; 25(9)2024 May 06.
Article En | MEDLINE | ID: mdl-38732259

Neuroinflammation, a hallmark of various central nervous system disorders, is often associated with oxidative stress and neuronal or oligodendrocyte cell death. It is therefore very interesting to target neuroinflammation pharmacologically. One therapeutic option is the use of nutraceuticals, particularly apigenin. Apigenin is present in plants: vegetables (parsley, celery, onions), fruits (oranges), herbs (chamomile, thyme, oregano, basil), and some beverages (tea, beer, and wine). This review explores the potential of apigenin as an anti-inflammatory agent across diverse neurological conditions (multiple sclerosis, Parkinson's disease, Alzheimer's disease), cancer, cardiovascular diseases, cognitive and memory disorders, and toxicity related to trace metals and other chemicals. Drawing upon major studies, we summarize apigenin's multifaceted effects and underlying mechanisms in neuroinflammation. Our review underscores apigenin's therapeutic promise and calls for further investigation into its clinical applications.


Anti-Inflammatory Agents , Apigenin , Neuroinflammatory Diseases , Apigenin/pharmacology , Apigenin/therapeutic use , Humans , Animals , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Oxidative Stress/drug effects , Inflammation/drug therapy , Inflammation/metabolism
2.
J Transl Med ; 22(1): 447, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741132

BACKGROUND: Retinal ischemia/reperfusion (RIR) is implicated in various forms of optic neuropathies, yet effective treatments are lacking. RIR leads to the death of retinal ganglion cells (RGCs) and subsequent vision loss, posing detrimental effects on both physical and mental health. Apigenin (API), derived from a wide range of sources, has been reported to exert protective effects against ischemia/reperfusion injuries in various organs, such as the brain, kidney, myocardium, and liver. In this study, we investigated the protective effect of API and its underlying mechanisms on RGC degeneration induced by retinal ischemia/reperfusion (RIR). METHODS: An in vivo model was induced by anterior chamber perfusion following intravitreal injection of API one day prior to the procedure. Meanwhile, an in vitro model was established through 1% oxygen and glucose deprivation. The neuroprotective effects of API were evaluated using H&E staining, spectral-domain optical coherence tomography (SD-OCT), Fluoro-Gold retrograde labeling, and Photopic negative response (PhNR). Furthermore, transmission electron microscopy (TEM) was employed to observe mitochondrial crista morphology and integrity. To elucidate the underlying mechanisms of API, the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, flow cytometry assay, western blot, cell counting kit-8 (CCK-8) assay, lactate dehydrogenase (LDH) assay, JC-1 kit assay, dichlorofluorescein-diacetate (DCFH-DA) assay, as well as TMRE and Mito-tracker staining were conducted. RESULTS: API treatment protected retinal inner plexiform layer (IPL) and ganglion cell complex (GCC), and improved the function of retinal ganglion cells (RGCs). Additionally, API reduced RGC apoptosis and decreased lactate dehydrogenase (LDH) release by upregulating Bcl-2 and Bcl-xL expression, while downregulating Bax and cleaved caspase-3 expression. Furthermore, API increased mitochondrial membrane potential (MMP) and decreased extracellular reactive oxygen species (ROS) production. These effects were achieved by enhancing mitochondrial function, restoring mitochondrial cristae morphology and integrity, and regulating the expression of OPA1, MFN2, and DRP1, thereby regulating mitochondrial dynamics involving fusion and fission. CONCLUSION: API protects RGCs against RIR injury by modulating mitochondrial dynamics, promoting mitochondrial fusion and fission.


Apigenin , Mitochondrial Dynamics , Neuroprotective Agents , Reperfusion Injury , Retinal Ganglion Cells , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Apigenin/pharmacology , Apigenin/therapeutic use , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Mitochondrial Dynamics/drug effects , Male , Apoptosis/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Models, Biological , Mice, Inbred C57BL
3.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732081

Flavonoid aglycones are secondary plant metabolites that exhibit a broad spectrum of pharmacological activities, including anti-inflammatory, antioxidant, anticancer, and antiplatelet effects. However, the precise molecular mechanisms underlying their inhibitory effect on platelet activation remain poorly understood. In this study, we applied flow cytometry to analyze the effects of six flavonoid aglycones (luteolin, myricetin, quercetin, eriodictyol, kaempferol, and apigenin) on platelet activation, phosphatidylserine externalization, formation of reactive oxygen species, and intracellular esterase activity. We found that these compounds significantly inhibit thrombin-induced platelet activation and decrease formation of reactive oxygen species in activated platelets. The tested aglycones did not affect platelet viability, apoptosis induction, or procoagulant platelet formation. Notably, luteolin, myricetin, quercetin, and apigenin increased thrombin-induced thromboxane synthase activity, which was analyzed by a spectrofluorimetric method. Our results obtained from Western blot analysis and liquid chromatography-tandem mass spectrometry demonstrated that the antiplatelet properties of the studied phytochemicals are mediated by activation of cyclic nucleotide-dependent signaling pathways. Specifically, we established by using Förster resonance energy transfer that the molecular mechanisms are, at least partly, associated with the inhibition of phosphodiesterases 2 and/or 5. These findings underscore the therapeutic potential of flavonoid aglycones for clinical application as antiplatelet agents.


Blood Platelets , Flavonoids , Platelet Activation , Platelet Aggregation Inhibitors , Reactive Oxygen Species , Flavonoids/pharmacology , Humans , Platelet Aggregation Inhibitors/pharmacology , Platelet Activation/drug effects , Blood Platelets/metabolism , Blood Platelets/drug effects , Reactive Oxygen Species/metabolism , Apigenin/pharmacology , Quercetin/pharmacology , Luteolin/pharmacology , Signal Transduction/drug effects , Kaempferols/pharmacology , Thrombin/metabolism , Flavanones
4.
Front Endocrinol (Lausanne) ; 15: 1360054, 2024.
Article En | MEDLINE | ID: mdl-38638133

Introduction: Osteoporosis is a systemic age-related disease characterized by reduced bone mass and microstructure deterioration, leading to increased risk of bone fragility fractures. Osteoporosis is a worldwide major health care problem and there is a need for preventive approaches. Methods and results: Apigenin and Rutaecarpine are plant-derived antioxidants identified through functional screen of a natural product library (143 compounds) as enhancers of osteoblastic differentiation of human bone marrow stromal stem cells (hBMSCs). Global gene expression profiling and Western blot analysis revealed activation of several intra-cellular signaling pathways including focal adhesion kinase (FAK) and TGFß. Pharmacological inhibition of FAK using PF-573228 (5 µM) and TGFß using SB505124 (1µM), diminished Apigenin- and Rutaecarpine-induced osteoblast differentiation. In vitro treatment with Apigenin and Rutaecarpine, of primary hBMSCs obtained from elderly female patients enhanced osteoblast differentiation compared with primary hBMSCs obtained from young female donors. Ex-vivo treatment with Apigenin and Rutaecarpine of organotypic embryonic chick-femur culture significantly increased bone volume and cortical thickness compared to control as estimated by µCT-scanning. Discussion: Our data revealed that Apigenin and Rutaecarpine enhance osteoblastic differentiation, bone formation, and reduce the age-related effects of hBMSCs. Therefore, Apigenin and Rutaecarpine cellular treatment represent a potential strategy for maintaining hBMSCs health during aging and osteoporosis.


Indole Alkaloids , Mesenchymal Stem Cells , Osteoporosis , Quinazolinones , Humans , Aged , Apigenin/pharmacology , Apigenin/metabolism , Osteoblasts/metabolism , Cellular Senescence , Transforming Growth Factor beta/metabolism , Osteoporosis/drug therapy , Osteoporosis/metabolism
5.
Sci Rep ; 14(1): 9540, 2024 04 25.
Article En | MEDLINE | ID: mdl-38664447

Triple-negative breast cancer (TNBC) is a metastatic disease and a formidable treatment challenge as it does not respond to existing therapies. Epigenetic regulators play a crucial role in the progression and metastasis by modulating the expression of anti-apoptotic, pro-apoptotic markers and related miRNAs in TNBC cells. We have investigated the anti-TNBC potential of dietary flavonoid 'Apigenin' and its combination with Vorinostat on MDA-MB-231 cells. At Apigenin generated ROS, inhibited cell migration, arrested the cell cycle at subG0/G1 phases, and induced apoptotic-mediated cell death. Apigenin reduced the expression of the class-I HDACs at the transcriptomic and proteomic levels. In the immunoblotting study, Apigenin has upregulated pro-apoptotic markers and downregulated anti-apoptotic proteins. Apigenin inhibited the enzymatic activity of HDAC/DNMT and increased HAT activity. Apigenin has manifested its effect on miRNA expression by upregulating the tumor-suppressor miR-200b and downregulation oncomiR-21. Combination study reduced the growth of TNBC cells synergistically by modulating the expression of epigenetic and apoptotic regulators. Molecular docking and MD simulations explored the mechanism of catalytic inhibition of HDAC1 and HDAC3 and supported the in-vitro studies. The overall studies demonstrated an anti-TNBC potential of Apigenin and may help to design an effective strategy to treat metastatic phenotype of TNBC.


Apigenin , Apoptosis , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , MicroRNAs , Triple Negative Breast Neoplasms , Vorinostat , Apigenin/pharmacology , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Apoptosis/drug effects , Vorinostat/pharmacology , Epigenesis, Genetic/drug effects , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Female , Cell Movement/drug effects , Molecular Docking Simulation , Cell Proliferation/drug effects
6.
Cell Death Dis ; 15(4): 267, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622131

Isochlorate dehydrogenase 1 (IDH1) is an important metabolic enzyme for the production of α-ketoglutarate (α-KG), which has antitumor effects and is considered to have potential antitumor effects. The activation of IDH1 as a pathway for the development of anticancer drugs has not been attempted. We demonstrated that IDH1 can limit glycolysis in hepatocellular carcinoma (HCC) cells to activate the tumor immune microenvironment. In addition, through proteomic microarray analysis, we identified a natural small molecule, scutellarin (Scu), which activates IDH1 and inhibits the growth of HCC cells. By selectively modifying Cys297, Scu promotes IDH1 active dimer formation and increases α-KG production, leading to ubiquitination and degradation of HIF1a. The loss of HIF1a further leads to the inhibition of glycolysis in HCC cells. The activation of IDH1 by Scu can significantly increase the level of α-KG in tumor tissue, downregulate the HIF1a signaling pathway, and activate the tumor immune microenvironment in vivo. This study demonstrated the inhibitory effect of IDH1-α-KG-HIF1a on the growth of HCC cells and evaluated the inhibitory effect of Scu, the first IDH1 small molecule agonist, which provides a reference for cancer immunotherapy involving activated IDH1.


Carcinoma, Hepatocellular , Glucuronates , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Proteomics , Apigenin/pharmacology , Apigenin/therapeutic use , Ketoglutaric Acids/metabolism , Tumor Microenvironment , Isocitrate Dehydrogenase
7.
PLoS One ; 19(4): e0301086, 2024.
Article En | MEDLINE | ID: mdl-38662719

There is still a great global need for efficient treatments for the management of SARS-CoV-2 illness notwithstanding the availability and efficacy of COVID-19 vaccinations. Olive leaf is an herbal remedy with a potential antiviral activity that could improve the recovery of COVID-19 patients. In this work, the olive leaves major metabolites were screened in silico for their activity against SARS-CoV-2 by molecular docking on several viral targets such as methyl transferase, helicase, Plpro, Mpro, and RdRp. The results of in silico docking study showed that olive leaves phytoconstituents exhibited strong potential antiviral activity against SARS-CoV-2 selected targets. Verbacoside demonstrated a strong inhibition against methyl transferase, helicase, Plpro, Mpro, and RdRp (docking scores = -17.2, -20, -18.2, -19.8, and -21.7 kcal/mol.) respectively. Oleuropein inhibited 5rmm, Mpro, and RdRp (docking scores = -15, -16.6 and -18.6 kcal/mol., respectively) respectively. Apigenin-7-O-glucoside exhibited activity against methyl transferase and RdRp (docking score = -16.1 and -19.4 kcal/mol., respectively) while Luteolin-7-O-glucoside inhibited Plpro and RdRp (docking score = -15.2 and -20 kcal/mol., respectively). The in vitro antiviral assay was carried out on standardized olive leaf extract (SOLE) containing 20% oleuropein and IC50 was calculated. The results revealed that 20% SOLE demonstrated a moderate antiviral activity against SARS-CoV-2 with IC50 of 118.3 µg /mL. Accordingly, olive leaf could be a potential herbal therapy against SARS-CoV-2 but more in vivo and clinical investigations are recommended.


Antiviral Agents , Iridoids , Molecular Docking Simulation , Olea , Plant Extracts , Plant Leaves , Polyphenols , SARS-CoV-2 , Olea/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , SARS-CoV-2/drug effects , Plant Leaves/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Iridoids/pharmacology , Iridoids/chemistry , Humans , Iridoid Glucosides/pharmacology , Iridoid Glucosides/chemistry , Glucosides/pharmacology , Glucosides/chemistry , Methyltransferases/metabolism , Methyltransferases/antagonists & inhibitors , COVID-19/virology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Computer Simulation , COVID-19 Drug Treatment , Luteolin/pharmacology , Luteolin/chemistry , RNA Helicases/metabolism , RNA Helicases/antagonists & inhibitors , Apigenin/pharmacology , Apigenin/chemistry
8.
Am J Chin Med ; 52(2): 471-492, 2024.
Article En | MEDLINE | ID: mdl-38480499

The stimulator of interferon genes (STING) signaling pathway is crucial for the pathogenesis of autoimmune and inflammatory disorders, including acute lung injury (ALI). Apigenin (4[Formula: see text],5,7-trihydroxyflavone) is a natural flavonoid widely found in fruits, vegetables, and Chinese medicinal herbs that exhibits a range of pharmacological effects, such as antibacterial and anti-inflammatory activities. However, the efficacy of apigenin in STING pathway-mediated diseases remains unclear. Accordingly, this study screened Chinese medicines to identify potent agents that reduced the synthesis of type I interferons (IFNs). The results revealed apigenin as a potent compound with low cytotoxicity that markedly reduced the synthesis of type I IFNs in response to STING pathway agonists. Besides, apigenin markedly suppressed innate immune responses triggered by the STING agonist SR-717. Mechanistically, apigenin downregulated IFN beta 1 (IFNB1) expression mediated by the STING pathway via dose-dependent inhibition of STING expression, reduction of dimerization, nuclear translocation of phosphorylated IRF3, and disruption of the association between STING and IRF3. Moreover, apigenin effectively mitigated pathological pulmonary inflammation and lung edema in lipopolysaccharide (LPS)-induced ALI in mice. Apigenin further strongly attenuated the hallmarks of immoderate inflammation (interleukin (IL)-6, IL-1[Formula: see text], and tumor necrosis factor [Formula: see text]) and innate immune responses (IFNB1, C-X-C motif chemokine ligand 10, and IFN-stimulated gene 15) by preventing the activation of the STING/IRF3 pathway both in vitro and in vivo. Importantly, SR-717 significantly reversed the inhibitory effects of apigenin in LPS-induced THP1-BlueTM ISG macrophages. Collectively, apigenin effectively alleviated innate immune responses and mitigated inflammation in LPS-induced ALI via inhibition of the STING/IRF3 pathway. These findings suggest the potential of apigenin as a prophylactic and therapeutic candidate for managing STING-mediated diseases.


Apigenin , Lipopolysaccharides , Animals , Mice , Lipopolysaccharides/toxicity , Apigenin/pharmacology , Apigenin/therapeutic use , Membrane Proteins/metabolism , Immunity, Innate , Inflammation/drug therapy , Interleukin-6
9.
Int J Mol Sci ; 25(6)2024 Mar 12.
Article En | MEDLINE | ID: mdl-38542210

Ulcerative colitis (UC) is a chronic inflammatory disorder affecting the colon, with symptomatology influenced by factors including environmental, genomic, microbial, and immunological interactions. Gut microbiota dysbiosis, characterized by bacterial population alterations, contributes to intestinal homeostasis disruption and aberrant immune system activation, thereby exacerbating the inflammatory state. This study assesses the therapeutic efficacy of intraperitoneal (IP) injected flavonoids (apigenin, luteolin, and xanthohumol) in the reduction of inflammatory parameters and the modulation of the gut microbiota in a murine model of ulcerative colitis. Flavonoids interact with gut microbiota by modulating their composition and serving as substrates for the fermentation into other anti-inflammatory bioactive compounds. Our results demonstrate the effectiveness of luteolin and xanthohumol treatment in enhancing the relative abundance of anti-inflammatory microorganisms, thereby attenuating pro-inflammatory species. Moreover, all three flavonoids exhibit efficacy in the reduction of pro-inflammatory cytokine levels, with luteolin strongly demonstrating utility in alleviating associated physical UC symptoms. This suggests that this molecule is a potential alternative or co-therapy to conventional pharmacological interventions, potentially mitigating their adverse effects. A limited impact on microbiota is observed with apigenin, and this is attributed to its solubility constraints via the chosen administration route, resulting in its accumulation in the mesentery.


Colitis, Ulcerative , Colitis , Gastrointestinal Microbiome , Propiophenones , Rats , Mice , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/diagnosis , Apigenin/pharmacology , Apigenin/therapeutic use , Luteolin/pharmacology , Luteolin/therapeutic use , Colon , Inflammation/drug therapy , Flavonoids/pharmacology , Flavonoids/therapeutic use , Anti-Inflammatory Agents/pharmacology , Dextran Sulfate/pharmacology , Disease Models, Animal , Colitis/drug therapy
10.
Mol Med Rep ; 29(5)2024 05.
Article En | MEDLINE | ID: mdl-38516760

Pirarubicin (THP) is one of the most commonly used antineoplastic drugs in clinical practice. However, its clinical application is limited due to its toxic and heart­related side effects. It has been reported that oxidative stress, inflammation and apoptosis are closely associated with cardiotoxicity caused by pirarubicin (CTP). Additionally, it has also been reported that scutellarein (Sc) exerts anti­inflammatory, antioxidant, cardio­cerebral vascular protective and anti­apoptotic properties. Therefore, the present study aimed to investigate the effect of food therapy with Sc on CTP and its underlying molecular mechanism using echocardiography, immunofluorescence, western blot, ROS staining, and TUNEL staining. The in vivo results demonstrated that THP was associated with cardiotoxicity. Additionally, abnormal changes in the expression of indicators associated with oxidative stress, ferroptosis and apoptosis were observed, which were restored by Sc. Therefore, it was hypothesized that CTP could be associated with oxidative stress, ferroptosis and apoptosis. Furthermore, the in vitro experiments showed that Sc and the NADPH oxidase 2 (NOX2) inhibitor, GSK2795039 (GSK), upregulated glutathione peroxidase 4 (GPX4) and inhibited THP­induced oxidative stress, apoptosis and ferroptosis. However, cell treatment with the ferroptosis inhibitor, ferrostatin­1, or inducer, erastin, could not significantly reduce or promote, respectively, the expression of NOX2. However, GSK significantly affected ferroptosis and GPX4 expression. Overall, the results of the present study indicated that food therapy with Sc ameliorated CTP via inhibition of apoptosis and ferroptosis through regulation of NOX2­induced oxidative stress, thus suggesting that Sc may be a potential therapeutic drug against CTP.


Aminopyridines , Apigenin , Cardiotoxicity , Doxorubicin , Ferroptosis , Sulfonamides , Animals , Rats , Apigenin/pharmacology , Apigenin/therapeutic use , Apoptosis/drug effects , Doxorubicin/analogs & derivatives , Doxorubicin/toxicity , Ferroptosis/drug effects , NADPH Oxidase 2/drug effects , NADPH Oxidase 2/genetics , Oxidative Stress/drug effects
11.
Phytomedicine ; 128: 155418, 2024 Jun.
Article En | MEDLINE | ID: mdl-38518647

BACKGROUND: Scutellaria barbata D. Don (SB), commonly known as Ban Zhi Lian and firstly documented by Shigong Chen, is a dried whole plant that has been studied for its therapeutic effects on breast cancer, colon cancer, and prostate cancer. Among its various compounds, scutellarin (SCU) has been demonstrated with anti-tumor effects. PURPOSE: This study aimed to evaluate the effects of SB water extract (SBW) and scutellarin on breast cancer stem cells (BCSCs), and to investigate their potential therapeutic effects on breast tumors in mice. METHODS: BCSCs were enriched from human breast cancer cells (MDA-MB-231 and MDA-MB-361) and their characteristics were analyzed. The effects of varying concentrations of SBW and scutellarin on cell viability, proliferation, self-renewal, and migration abilities were studied, along with the underlying mechanisms. The in vivo anti-tumor effects of scutellarin were further evaluated in SCID/NOD mice. Firstly, mice were inoculated with naïve BCSCs and subjected to treatment with scutellarin or vehicle. Secondly, BCSCs were pre-treated with scutellarin or vehicle prior to inoculation into mice. RESULTS: The derived BCSCs expressed CD44, CD133 and ALDH1, but not CD24, indicating that BCSCs have been successfully induced from both MDA-MB-231 and MDA-MB-361 cells. Both SBW and scutellarin reduced the viability, proliferation, sphere and colony formation, and migration of BCSCs. In mice with tumors derived from naïve BCSCs, scutellarin significantly reduced tumor growth, expression of proliferative (Ki67) and stem cell markers (CD44), and lung metastasis. In addition, pre-treatment with scutellarin also slowed tumor growth. Western blot results suggested the involvement of Wnt/ß-catenin, NF-κB, and PTEN/Akt/mTOR signaling pathways underlying the inhibitory effects of scutellarin. CONCLUSION: Our study demonstrated for the first time that both SB water extract and scutellarin could reduce the proliferation and migration of BCSCs in vitro. Scutellarin was shown to possess novel inhibitory activities in BCSCs progression. These findings suggest that Scutellaria barbata water extract, in particular, scutellarin, may have potential to be further developed as an adjuvant therapy for reducing breast cancer recurrence.


Apigenin , Breast Neoplasms , Cell Proliferation , Glucuronates , Mice, Inbred NOD , Neoplastic Stem Cells , Scutellaria , Animals , Apigenin/pharmacology , Scutellaria/chemistry , Glucuronates/pharmacology , Neoplastic Stem Cells/drug effects , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Mice, SCID , Antineoplastic Agents, Phytogenic/pharmacology , Mice , Plant Extracts/pharmacology , Cell Movement/drug effects , Cell Survival/drug effects , Xenograft Model Antitumor Assays , Hyaluronan Receptors/metabolism
12.
Sci Rep ; 14(1): 5754, 2024 03 08.
Article En | MEDLINE | ID: mdl-38459102

The present study aimed to explore the potential ameliorative effect of apigenin (APG) against diabetes-associated genitourinary complications in rats. A diabetic rat model was induced by the intraperitoneal injection of streptozotocin (STZ). All experimental animals were treated with vehicle or vehicle plus APG at a dose of 0.78 mg/kg/day for 10 days, either once diabetes was confirmed or at the end of the 3rd week after confirmation of diabetes. Rats were sacrificed at the end of the fifth week. In addition to the histological assessment, an analysis of kidney function tests and serum testosterone was performed to assess diabetic genitourinary complications. Gene expression of the mitochondrial fission protein, dynamin related protein 1 (Drp1), was measured in renal and testicular tissues using qRT PCR. APG can increase body weight, reduce blood glucose levels, and improve renal and testicular functions in diabetic rats. APG decreased Drp1 overexpression in diabetic animals' kidneys and testes. In summary, our current work discloses that APG attenuates diabetic genitourinary lesions in rats via suppressing Drp1 overexpression.


Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Diabetic Nephropathies , Rats , Animals , Apigenin/pharmacology , Apigenin/therapeutic use , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/pathology , Kidney/metabolism , Dynamins/metabolism , Diabetic Nephropathies/pathology
13.
Int J Biol Sci ; 20(5): 1563-1577, 2024.
Article En | MEDLINE | ID: mdl-38481798

Fetuin-A, a hepatokine secreted by hepatocytes, binds to insulin receptors and consequently impairs the activation of the insulin signaling pathway, leading to insulin resistance. Apigenin, a flavonoid isolated from plants, has beneficial effects on insulin resistance; however, its regulatory mechanisms are not fully understood. In the present study, we investigated the molecular mechanisms underlying the protective effects of apigenin on insulin resistance. In Huh7 cells, treatment with apigenin decreased the mRNA expression of fetuin-A by decreasing reactive oxygen species-mediated casein kinase 2α (CK2α)-nuclear factor kappa-light-chain-enhancer of activated B activation; besides, apigenin decreased the levels of CK2α-dependent fetuin-A phosphorylation and thus promoted fetuin-A degradation through the autophagic pathway, resulting in a decrease in the protein levels of fetuin-A. Moreover, apigenin prevented the formation of the fetuin-A-insulin receptor (IR) complex and thereby rescued the PA-induced impairment of the insulin signaling pathway, as evidenced by increased phosphorylation of IR substrate-1 and Akt, and translocation of glucose transporter 2 from the cytosol to the plasma membrane. Similar results were observed in the liver of HFD-fed mice treated with apigenin. Collectively, our findings revealed that apigenin ameliorates obesity-induced insulin resistance in the liver by targeting fetuin-A.


Insulin Resistance , Mice , Animals , alpha-2-HS-Glycoprotein/metabolism , Apigenin/pharmacology , Apigenin/therapeutic use , Obesity/drug therapy , Obesity/metabolism , Insulin/metabolism , alpha-Fetoproteins/metabolism
14.
ACS Appl Bio Mater ; 7(3): 1317-1335, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38357783

Wound management in obesity is complicated by excessive exudates from wounded areas, pressure ulcerations due to stacking of the fat layer, and vascular rarefaction. The current study explored the development of biomaterials for reprogramming the altered wound microenvironment under obese conditions. Self-assembled collagen biomatrix with trans and de novo browning activator, apigenin, was fabricated as a soft tissue regenerative wound dressing material. The as-synthesized self-assembled collagen biomatrix exhibited excellent thermal, mechanical, and biological stability with a superior wound exudate absorption capacity. The apigenin self-assembled collagen biomatrix exhibited porous 3-D microstructure that mimicked the extracellular matrix that promoted cell adhesion and proliferation. The apigenin self-assembled collagen multifunctional biomatrix triggered adaptive localized thermogenesis in the subcutaneous fat layer, resulting in the activation of angiogenesis and fibroblast spreading and migration. The in vivo wound healing assay performed in DIO-C57BL6 mice showed faster tissue regeneration within 9 days, with well-defined neo-epidermis, blood vessel formation, thick collagen deposition, minimal inflammation, and significant activation of browning in the subcutaneous adipose layer. This study paves the way forward for the development of specialized regenerative biomatrices that reprogram the obese wound bed for faster tissue regeneration.


Apigenin , Collagen , Animals , Mice , Apigenin/pharmacology , Apigenin/therapeutic use , Mice, Inbred C57BL , Collagen/chemistry , Wound Healing , Obesity
15.
Theriogenology ; 218: 89-98, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38308957

After ovulation, senescent oocytes inevitably experience reduced quality and defects in embryonic development. Apigenin (API) is a flavonoid with a wide range of pharmacological effects. Therefore, this study examined the protective effects of API on the quality of porcine oocytes during in-vitro ageing and the underlying mechanisms. The results showed that API treatment could reduce the activation rate after aging for 48 h. In addition, API significantly reduced reactive oxygen species, abnormal distribution of mitochondria, early apoptosis in ageing oocytes, increased glutathione, and mitochondrial adenosine triphosphate levels in ageing oocytes. Importantly, API increased the embryonic development rate in aged oocytes. We also examined molecular changes, finding decreased sirtuin 1 expression in in-vitro postovulatory oocytes, but API reversed this effect. Our results suggest that API attenuates the deterioration of oocyte quality during in-vitro ageing, possibly by reducing oxidative stress through the upregulation of sirtuin 1.


Apigenin , Sirtuin 1 , Female , Animals , Swine , Sirtuin 1/genetics , Sirtuin 1/metabolism , Apigenin/pharmacology , Apigenin/metabolism , Up-Regulation , Cellular Senescence/physiology , Oxidative Stress , Reactive Oxygen Species/metabolism , Oocytes/physiology
16.
Biosens Bioelectron ; 251: 116123, 2024 May 01.
Article En | MEDLINE | ID: mdl-38359670

Breast cancer lung metastases (BCLM) are a major cause of high mortality in patients. The shortage of therapeutic targets and rapid drug screening tools for BCLM is a major challenge at present. Mitochondrial autophagy, which involves the degradation of proteins associated with cancer cell aggressiveness, represents a possible therapeutic approach for the treatment of BCLM. Herein, four fluorescent biosensors with different alkyl chains were designed and synthesized to monitor mitochondrial autophagy. Among them, PMV-12 demonstrated the highest sensitivity to viscosity variance, the least impact on polarity, and the longest imaging time. The introduction of the C12-chain made PMV-12 anchored in the mitochondrial membrane without being disturbed by changes of the mitochondrial membrane potential (MMP), thereby achieving the long-term monitor in situ for mitochondrial autophagy. Mitochondria stained with PMV-12 induced swelling and viscosity increase after treating with apigenin, which indicated that apigenin is a potential mitochondrial autophagy inducer. Apigenin was subsequently verified to inhibit cancer cell invasion by 92%. Furthermore, PMV-12 could monitor the process of BCLM in vivo and evaluate the therapeutic effects of apigenin. This work provides a fluorescent tool for elucidating the role of mitochondrial autophagy in the BCLM process and for anti-metastatic drug development.


Biosensing Techniques , Breast Neoplasms , Lung Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Apigenin/metabolism , Apigenin/pharmacology , Apigenin/therapeutic use , Autophagy , Lung Neoplasms/pathology , Mitochondria/metabolism , Coloring Agents
17.
Biomed Pharmacother ; 172: 116251, 2024 Mar.
Article En | MEDLINE | ID: mdl-38330709

Gastric Cancer (GC) is one of the most prevalent cancers worldwide. As the currently available therapeutic options are invasive, new and more benign options are being explored. One of which is Apigenin (Api), a natural flavonoid found in fruits and vegetables, such as celery, parsley, garlic, bell pepper and chamomile tea. Api has known anti-inflammatory, -oxidant, and -proliferative proprieties in several diseases and its potential as an anticancer compound has been explored. Here we systematize the available data regarding the effects of Api on GC cells, in terms of cell proliferation, apoptosis, Helicobacter pylori (H. pylori) infection, and molecular targets. From the literature it is possible to conclude that Api inhibits cell growth in a dose- and time-dependent manner, which is accompanied by the reduction of clone formation and induction of apoptosis. This occurs through the Akt/Bad/Bcl2/Bax axis that activates the mitochondrial pathway of apoptosis, resulting in restriction of cell proliferation. Additionally, it seems that the anti-proliferative potential of Api on GC cells is particularly relevant in a more aggressive GC phenotype but can also affect normal gastric cells. This indicate that this flavonoid must be used in low-to-moderate doses to avoid side-effects induced by disturbance of the normal epithelium. In H. Pylori-infected cells, the literature demonstrates that Api reduces inflammation by diminishing the levels of H. pylori colonization, by preventing NF-kB activation and by diminishing the production of reactive oxygen specimens (ROS). Accordingly, in GC Api seems to regulate different hallmarks of cancer, such as cell proliferation, apoptosis, cell migration, inflammation and oxidative stress, demonstrating its potential has an anti-GC compound.


Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Apigenin/pharmacology , Apoptosis , Antioxidants , Inflammation
18.
Sci Rep ; 14(1): 4527, 2024 02 24.
Article En | MEDLINE | ID: mdl-38402367

This pioneering research investigated apigenin potential to augment rooster sperm cryosurvival in an extender model. Apigenin is a natural antioxidant flavonoid showing promise for improved post-thaw sperm function. However, its effects on avian semen cryopreservation remain unexplored. This first study supplemented rooster sperm Lake extender with 0, 50, 100, 200, 400 µmol/L apigenin to determine the optimal concentrations for post-thaw quality. Supplementation with 100 µmol/L apigenin resulted in significant enhancements in total motility (from 41.5% up to 71.5%), progressive motility (18.1% to 29.1%) (p < 0.05), membrane integrity (40% to 68%), mitochondrial function (p < 0.001), viability (37% to 62%) and total antioxidant capacity (p < 0.001) compared to the control. It also substantially reduced percentages of abnormal morphology, reactive oxygen species and apoptosis (p < 0.001). Although 200 µmol/L apigenin significantly enhanced some attributes, effects were markedly lower than 100 µmol/L. Higher doses did not improve cryoprotective parameters. This indicates 100 µmol/L as the optimal apigenin concentration. This represents the first report of apigenin protecting rooster sperm from cryodamage. The natural antioxidant improved post-thaw sperm quality, likely by suppressing oxidative stress and apoptosis. Apigenin shows promise for enhancing rooster sperm cryosurvival.


Semen Preservation , Semen , Male , Animals , Antioxidants/pharmacology , Apigenin/pharmacology , Semen Analysis , Chickens , Cryoprotective Agents/pharmacology , Semen Preservation/veterinary , Semen Preservation/methods , Spermatozoa , Cryopreservation/methods , Dietary Supplements , Sperm Motility
19.
Front Biosci (Landmark Ed) ; 29(2): 65, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38420803

BACKGROUND: Clinical indexes are often selected as relevant factors for constructing prognostic models of tongue squamous cell carcinoma (TSCC) patients, while factors related to therapeutic targets are less frequently included. As Apigenin (API) shows anti-tumor properties in many tumors, in this study, we construct a novel prognostic model for TSCC patients based on Apigenin-associated genes through transcriptomic analysis. METHODS: The effect of Apigenin (API) on the cell characteristics of TSCC cells was measured by several phenotype experiments. RNA-seq was executed to ensure differentially expressed genes (DEGs) in squamous cell carcinoma-9 (SCC-9) cells after API treatment. Furthermore, reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry were performed to verify the expression of API-related genes. Then, combined with the gene expression data and relevant individual information of TSCC samples acquired from The Cancer Genome Atlas (TCGA), an API-related model was built through Lasso regression and multivariate Cox regression. A receiver operating characteristic (ROC) curve and a nomogram and calibration curve were created to forecast patient outcomes to improve the clinical suitability of the API-related signature. The relationships between the two risk groups and function enrichment, immune infiltration characteristics, and drug susceptibility were analyzed. RESULTS: We demonstrated that API could inhibit the malignant behavior of TSCC cells. Among API-related genes, TSCC cells treated with API, compared to the control group, have higher levels of transmembrane protein 213 (TMEM213) and G protein-coupled receptor 158 (GPR158), and lower levels of caspase 14 (CASP14) and integrin subunit alpha 5 (ITGA5). An 7 API-associated gene model was built through Lasso regression and multivariate Cox regression that could direct TSCC prognostic status and tumor immune cell infiltration. In addition, we acquired 6 potential therapeutic agents for TSCC based on the prognostic model. CONCLUSIONS: Our research suggested the inhibition effect of API on TSCC cells and provided a novel prognostic model combined with therapeutic factors that can guide the prognosis of TSCC and clinical decision-making in TSCC.


Carcinoma, Squamous Cell , Tongue Neoplasms , Humans , Tongue Neoplasms/drug therapy , Tongue Neoplasms/genetics , Tongue Neoplasms/metabolism , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Apigenin/pharmacology , Apigenin/metabolism , Prognosis , Tongue/metabolism , Tongue/pathology
20.
Phytomedicine ; 124: 155272, 2024 Feb.
Article En | MEDLINE | ID: mdl-38181530

BACKGROUND: Alzheimer's diseases (AD) and dementia are among the highly prevalent neurological disorders characterized by deposition of beta amyloid (Aß) plaques, dense deposits of highly phosphorylated tau proteins, insufficiency of acetylcholine (ACh) and imbalance in glutamatergic system. Patients typically experience cognitive, behavioral alterations and are unable to perform their routine activities. Evidence also suggests that inflammatory processes including excessive microglia activation, high expression of inflammatory cytokines and release of free radicals. Thus, targeting inflammatory pathways beside other targets might be the key factors to control- disease symptoms and progression. PURPOSE: This review is aimed to highlight the mechanisms and pathways involved in the neuroprotective potentials of lead phytochemicals. Further to provide updates regarding challenges associated with their use and their progress into clinical trials as potential lead compounds. METHODS: Most recent scientific literature on pre-clinical and clinical data published in quality journals especially on the lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin was collected using SciFinder, PubMed, Google Scholar, Web of Science, JSTOR, EBSCO, Scopus and other related web sources. RESULTS: Literature review indicated that the drug discovery against AD is insufficient and only few drugs are clinically approved which have limited efficacy. Among the therapeutic options, natural products have got tremendous attraction owing to their molecular diversity, their safety and efficacy. Research suggest that natural products can delay the disease onset, reduce its progression and regenerate the damage via their anti-amyloid, anti-inflammatory and antioxidant potentials. These agents regulate the pathways involved in the release of neurotrophins which are implicated in neuronal survival and function. Highly potential lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin regulate neuroprotective signaling pathways implicated in neurotrophins-mediated activation of tropomyosin receptor kinase (Trk) and p75 neurotrophins receptor (p75NTR) family receptors. CONCLUSIONS: Phytochemicals especially phenolic compounds were identified as highly potential molecules which ameliorate oxidative stress induced neurodegeneration, reduce Aß load and inhibit vital enzymes. Yet their clinical efficacy and bioavailability are the major challenges which need further interventions for more effective therapeutic outcomes.


Alzheimer Disease , Biological Products , Curcumin , Neuroprotective Agents , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Resveratrol/pharmacology , Curcumin/pharmacology , Quercetin/pharmacology , Apigenin/pharmacology , Genistein/pharmacology , Amyloid beta-Peptides/metabolism , Oxidative Stress , Anti-Inflammatory Agents/pharmacology , Biological Products/pharmacology , Signal Transduction , Nerve Growth Factors/metabolism , Phytochemicals/therapeutic use , Neuroprotective Agents/chemistry
...